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Abstract 

One of the major challenges in advancing discovery of new aluminium alloys is the heterogeneous 

nature of the process, experimental and simulation datasets. This data is often fragmented with 

inconsistent terminologies necessitating an integrated semantic modelling framework for robust 

data harmonisation to derive meaningful insights. In our work, we develop a multi-layer semantic 

integration architecture that employs standardised ontologies implemented through frameworks 

such as Resource Description Framework (RDF) and Web Ontology Language (OWL) to 

systematically encode critical variables including alloy composition, processing parameters, and 

performance metrics into interoperable semantic entities. This structured approach facilitates 

precise data aggregation, automated inference, and advanced query capabilities. 

To ensure standardization and compatibility with broader material science data, we align with key 

standards relevant to materials modelling in general and the aluminium industry in specific, such 

as relevant ISO standards (ISO 3522 and ISO 7722) for aluminium and aluminium alloys casting, 

European Materials Modelling Ontology (EMMO) for materials modelling, the Materials Design 

Ontology (MDO) focusing on material structures and compositions, Materials Mechanics 

Ontology (MMO) capturing mechanical properties, and ChEBI (Chemical Entities of Biological 

Interest) providing standardised terminology for chemical elements and compounds. This 

structured approach facilitates precise data aggregation, automated inference, and advanced query 

capabilities. 

Integral to our methodology is the incorporation of a domain-specific large language model 

(LLM) that operates within these rigorously defined ontologies. The integrated semantic layer 

enables language models to better interpret complex experimental protocols mitigating 

hallucinations and improving reliability and enables users to query multiple data sources with 

natural language. In this work, we present a comprehensive semantic modelling framework that 

combines standardised ontologies with LLM-driven natural language querying to accelerate and 

enhance the design of novel aluminium alloys. 

Keywords: Large Language Model (LLM), Semantic modelling, Ontology, Aluminium alloys, 

Web Ontology Language (OWL). 

1. Introduction

The development of novel aluminium alloys is a time-consuming, resource-intensive process, 

traditionally relying on empirical approaches and expert knowledge. The complexity of alloy 

design stems from the high-dimensional compositional space, intricate processing-structure-

property relationships, and the heterogeneity of available data. Accelerating this process requires 
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advanced computational techniques that can integrate disparate data sources while maintaining 

scientific rigor [1]. 

 

In the aluminium industry, especially for cast alloys, data fragmentation and inconsistent 

terminologies present significant challenges. Information about composition, microstructure, 

mechanical and thermal properties, processing parameters, and application-specific performance 

exists in various formats across research papers, industrial reports, internal databases, and 

simulation outputs. This fragmentation makes it difficult to establish comprehensive relationships 

between composition, processing, structure, and properties [2]. 

 

Traditional data integration approaches often struggle with the semantic complexity of materials 

science concepts. For example, a property like "strength" can refer to yield, tensile, compressive, 

or fatigue strength, each measured under specific conditions. Without proper semantic context, 

data integration leads to erroneous comparisons and conclusions that hinder alloy 

development [3]. 

 

Recent advances in semantic modelling and large language models (LLMs) offer promising 

solutions. Ontologies provide formal, explicit specifications of shared conceptualisations, 

enabling precise definition of entities, properties, and relationships in a domain. LLMs excel at 

natural language understanding and generation, enabling more intuitive interactions with complex 

knowledge bases. However, their application in scientific domains is often hindered by 

hallucination, limited domain knowledge, and a lack of specific reasoning capabilities [4]. 

 

We present an integrated approach that combines ontology-driven semantic modelling with 

domain specific LLMs to accelerate aluminium alloy design. Our approach focuses on aluminium 

cast alloys, critical for aerospace, automotive, and general engineering sectors [5]. We use the 

Web Ontology Language (OWL) for formalisation and integrate standards such as the Resource 

Description Framework (RDF), European Materials Modelling Ontology (EMMO) [6], Materials 

Design Ontology (MDO) [7], Chemical Entities of Biological Interest (ChEBI) [8], and 

Quantities, Units, Dimensions, and Types (QUDT) [9]. We also adhere to industry standards for 

aluminium alloys, including ISO 3522 for chemical composition and mechanical properties [10] 

and ISO 7722 for the global designation system of castings [11]. For all subsequent mentions, we 

use only the abbreviations. 

 

1.1 Ontologies and LLMs 

 

Ontologies provide a formal, explicit way to define shared conceptualisations, enabling precise 

definition of entities, properties, and relationships in a domain. LLMs excel at natural language 

understanding and generation, enabling more intuitive interactions with complex knowledge 

bases. 

 

1.2 Integrated Approach 

 

The integrated approach combines ontology-driven semantic modelling with domain-specific 

LLMs to accelerate aluminium alloy design. Our approach focuses specifically on aluminium cast 

alloys, which are critical for applications in aerospace, automotive, and general engineering 

sectors. 

 

2. Methodology 

 

Our approach to accelerating aluminium alloy design is built on a multi-layer semantic integration 

architecture that combines standardised ontologies, graph-based knowledge representation, and 

LLM-powered natural language interfaces. 
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6. Limitations and Challenges 

 

In this section, we outline the main limitations and challenges identified in our approach: 

 

• Ontology construction and automation: Our semi-automated workflow accelerates ontology 

development by combining LLM-driven parsing with a Python ontology library. However, 

manual verification and domain expert oversight remain essential to ensure semantic 

correctness and prevent errors. The Python-centric outputs can also limit adaptability to other 

frameworks. 

 

• Reasoning and explainability: While the system excel at information retrieval and basic 

comparative analyses, complex causal reasoning about alloy behaviour demands multi-step 

inference. Providing transparent explanations and provenance for these reasoning chains 

remains an open challenge. 

 

• Validation and trust: Ensuring the reliability of system recommendations, especially for high-

stakes applications, requires robust validation workflows, transparent auditing of inference 

steps, and clear provenance tracking. 

 

• Scalability and context limitations: As the ontology schema grows, embedding the entire 

model in an LLM context window is impractical. Our agentic graph-query approach addresses 

this but introduces additional overhead in tool calls and multi-hop reasoning. Improving 

performance, reducing latency, and enhancing tool-use proficiency for large-scale ontology 

traversal remain critical challenges. 

 

7. Conclusions 

 

We presented an integrated approach to accelerating aluminium alloy design through ontology-

driven semantic modelling and LLMs. Our main contributions: 

• Development of a comprehensive ontology for aluminium cast alloys using a semi-automated, 

LLM-assisted workflow. 

• Integration of the ontology with a property graph database for advanced semantic querying. 

• Enabling natural language querying of the knowledge graph using LLMs. 

• Demonstration of the effectiveness with real-world alloy data and use cases. 

 

This integration of semantic technologies with LLMs addresses data integration and knowledge 

accessibility challenges in materials science, making alloy knowledge more accessible and 

actionable, and accelerating materials innovation for diverse applications. 
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